
Distributed Algorithms

Reliable & Causal Broadcast - solutions
2nd exercise session

Matteo Monti <matteo.monti@epfl.ch>
Jovan Komatovic <jovan.komatovic@epfl.ch>

1

mailto:matteo.monti@epfl.ch
mailto:jovan.komatovic@epfl.ch

Reliable broadcast
Specification:

● Validity: If a correct process broadcasts m, then it eventually delivers m.

● Integrity: m is delivered by a process at most once, and only if it was
previously broadcast.

● Agreement: If a correct process delivers m, then all correct processes
eventually deliver m.

2

Algorithm: Lazy Reliable Broadcast

Strong accuracy:
No correct process is ever suspected:

Strong completeness:
Eventually, every faulty process is permanently suspected by
every correct process:

Where:
● crashed(F) is the set of crashed processes.
● correct(F) is the set of correct processes.
● H(p, t) is the output of the failure detector of process p at time t.

3

Exercise 1
Implement a reliable broadcast algorithm without using any failure detector, i.e.,
using only BestEffort-Broadcast(BEB).

4

Exercise 1 (Solution)
Use a step of all-to-all communication.

In particular, very process that gets a
message relays it immediately.

Recall that in the original algorithm,
processes were relaying messages
from a process p only if p crashes.

5

upon initialization do
delivered := {}

upon RB-broadcast(m) do
send(m) to Π \ {p}
RB-deliver(m)

upon BEB-receive(m) from q do
if not m ∈ delivered

send (m) to Π \ {p, q}
RB-deliver(m)
delivered := delivered ∪ m

Agreement: Before RB-delivering m, a correct process p forwards m to all processes. By the
properties of perfect channels and the fact that p is correct, all correct processes will eventually
receive m and RB-deliver it.

Exercise 2
The reliable broadcast algorithm presented in class has the processes
continuously fill their different buffers without emptying them.

Modify it to remove (i.e. garbage collect) unnecessary messages from the buffers:

A. from, and
B. delivered

6

Exercise 2 (Solution)
A. The from buffer is used only to store messages that are relayed in the case of

a failure. Therefore, messages from the from buffer can be removed as soon
as they are relayed.

B. Messages from the delivered array cannot be removed. Consider this
scenario: If a process crashes and its messages are retransmitted by two
different processes, then a process might RB-deliver the same message twice
if it empties the delivered buffer in the meantime. This is a violation of the “no
duplication” property.

7

Uniform reliable broadcast
Specification:

● Validity: If a correct process broadcasts m, then it eventually delivers m.

● Integrity: m is delivered by a process at most once, and only if it was
previously broadcast.

● Uniform Agreement: If a correct process delivers m, then all correct
processes eventually deliver m.

8

Algorithm: All-Ack Uniform Reliable Broadcast

9

Exercise 3
What happens in the reliable broadcast and uniform reliable broadcast algorithms
if the:

A. accuracy, or
B. completeness

property of the failure detector is violated?

10

Exercise 3 (Solution 1/2)
Reliable broadcast:

1. Suppose that accuracy is violated. Then, the processes might be relaying
messages when this is not really necessary. This wastes resource, but does
not impact correctness.

2. Suppose that completeness is violated. Then, the processes might not be
relaying messages they should be relaying. This may violate agreement. For
instance, assume that only a single process p1 BEB-delivers (hence
RB-delivers) a message m from a crashed process p2. If a failure detector (at
p1) does not ever suspect p2, no other correct process will deliver m
(agreement is violated).

11

Exercise 3 (Solution 2/2)
Uniform Reliable broadcast:

Consider a system of three processes p1, p2 and p3. Assume that p1
URB-broadcasts the message m.

1. Suppose that accuracy is violated. Assume that p1 falsely suspects p2 and p3
to have crashed. p1 eventually URB-delivers m. Assume that p1 crashes
afterwards. It may happen that p2 and p3 never BEB-deliver m and have no
knowledge about m (uniform agreement is violated).

2. Suppose that completeness is violated. p1 might never URB-deliver m if either
p2 or p3 crashes and p1 never detects their crash. Hence, p1 would wait
indefinitely for p2 and p3 to relay m (validity property violation)

12

Exercise 4
Implement a uniform reliable broadcast algorithm without using any failure
detector, i.e., using only BestEffort-Broadcast(BEB).

13

Exercise 4 (Solution)
Just modify the “candeliver” function.

Function candeliver(m) returns Boolean is
return #(ack[m]) > N / 2

Uniform agreement:
Suppose that a correct process delivers m. That means that at least one correct
process p “acknowledged” m (rebroadcast m using BestEffortBroadcast).
Consequently, all correct processes eventually deliver m from BestEffortBroadcast
broadcast by p and rebroadcast m themselves (if they have not done that yet).
Hence, every correct process eventually collects at least N/2 acknowledgements
and delivers m.

14

Causal Broadcast
Definition (Happens-before):

We say that an event e happens-before an event e’, and we write e → e’, if one of
the following three cases holds (is true):

(e and e’ are executed by the same process)

(e and e’ are send/receive events of a
message respectively)

(i.e. → is transitive)

15

Causal Broadcast
Specification:

It has the same specification of reliable broadcast, with the additional ordering
constraint of causal order.

More precisely (causal order):

Which means that:
If the broadcast of a message m happens-before the broadcast of a message m’, then no
process delivers m’ unless it has previously delivered m.

16

Exercise 5
Can we devise a broadcast algorithm that does not ensure the causal delivery
property but only (in) its non-uniform variant:

No correct process pi delivers a message m2 unless pi has already delivered every
message m1 such that m1 → m2?

17

Exercise 5 (Solution)
No! Assume that some algorithm does not ensure the causal delivery property but
ensures its non-uniform variant. Assume also that m1 → m2.

This means that a correct process has to deliver m1 before delivering m2, but a
faulty process is allowed to deliver m2 and not deliver m1.

However, a process doesn’t know that is faulty in advance (i.e., before it crashes).
So, no algorithm can “treat faulty processes in a special way”, i.e., a process has
to behave correctly until it crashes.

Reminder (Causal delivery property): For any message m1 that potentially caused
a message m2 , i.e., m1 → m2, no process delivers m2 unless it has already
delivered m1.

18

Exercise 6
Suggest a memory optimization of the garbage
collection scheme of the following algorithm:

No-Waiting Causal Broadcast

Garbage-Collection of Causal Past in the
“No-Waiting Causal Broadcast”

left is

19

Exercise 6 (Solution)
When removing a message m from the past, we can also remove all the
messages that causally precede this message — and then recursively those that
causally precede these.

20

Exercise 7
Can we devise a Best-effort Broadcast algorithm that satisfies the causal delivery
property, without being a causal broadcast algorithm, i.e., without satisfying the
agreement property of a reliable broadcast?

21

Exercise 7 (Solution 1/2)
No! Assume that some broadcast algorithm ensures the causal delivery property
and is not reliable, but best-effort; define an instance co of the corresponding
abstraction, where processes co-broadcast and co-deliver messages.

The only way for an algorithm to be best-effort broadcast but not reliable
broadcast is to violate the agreement property: there must be some execution of
the algorithm where some correct process p co-delivers a message m that some
other process q does not ever co-deliver. This is possible in a best-effort broadcast
algorithm, in fact this can only happen if the process s that co-broadcasts the
message m is faulty (and crashes during the broadcast of m).

22

Exercise 7 (Solution 2/2)
Assume now that after co-delivering m, process p co-broadcasts a message m’.
Given that p is correct and that the broadcast is best-effort, all correct processes,
including q, will co-deliver m’. Given that m precedes m’ (in causal order), q must
have co-delivered m as well, a contradiction.

Hence, any best-effort broadcast that satisfies the causal delivery property
satisfies agreement and is, thus, also a reliable broadcast.

23

In a nutshell: s

p

q

m

m’ But should have delivered m before!

Exercise 8
In the “Waiting Causal Broadcast”, we say that V ≤ W if, for every i = 1, …, N, it
holds that V[i] ≤ W[i].

Question: Why do we not use “<” instead of “≤”?

24

Exercise 8 (Solution)
Let V be encoding of the past of process q, and W be the encoding of the sender s
at the moment of sending a message m.
“V[p] = W[p]” means that q is not “missing” any messages from p that s had
delivered before it sent m. Hence, q should not wait for any other messages with
sender p and should deliver m.

Example: Suppose that s broadcasts m with the vector clock [0, …, 0]. Then, no
process delivers m if we use “<” instead of “≤”.

25

