Distributed Algorithms

Reliable & Causal Broadcast - solutions
2nd exercise session

Matteo Monti <matteo.monti@epfl.ch>
Jovan Komatovic <jovan.komatovic@epfl.ch>

mailto:matteo.monti@epfl.ch
mailto:jovan.komatovic@epfl.ch

Reliable broadcast
Specification:

e Validity: If a correct process broadcasts m, then it eventually delivers m.

e Integrity: mis delivered by a process at most once, and only if it was
previously broadcast.

e Agreement: If a correct process delivers m, then all correct processes
eventually deliver m.

Algorithm: Lazy Reliable Broadcast

Implements:
ReliableBroadcast, instance rb.

Strong accuracy:
No correct process is ever suspected:

VF,VH,Vt € T,Vp € correct(F),¥Yq :p ¢ H(q,t)

Uses:
BestEffortBroadcast, instance beb;
PerfectFailureDetector, instance P.

upon event (rb, Init) do
correct =11,

from[p] := [0V Strong completeness:

upon event (rb, Broadcast | m) do Eventually, every faulty process is permanently suspected by
trigger (beb, Broadcast | [DATA, self, m]); every correct process:
upon event (beb, Deliver | p, [DATA, s,m]) do VEVH,3t € T,Vp € crashed(F),Vq € correct(F),Vt' >t :p e H(q,t)

if m & from([s] then
trigger (rb, Deliver | s, m);

Sfrom|[s] :=from[s] U {m}; Where:
if s ¢ correct then _ e crashed(F) is the set of crashed processes.
trigger { beb, Broadcast | [DATA, s, m]); e correct(F) is the set of correct processes.
upon event (P, Crash | p) do e H(p, t) is the output of the failure detector of process p at time t.

correct := correct \ {p};
forall m € from[p] do
trigger (beb, Broadcast | [DATA, p, m]); °

Exercise 1

Implement a reliable broadcast algorithm without using any failure detector, i.e.,
using only BestEffort-Broadcast(BEB).

Exercise 1 (Solution)

Use a step of all-to-all communication.

In particular, very process that gets a
message relays it immediately.

Recall that in the original algorithm,
processes were relaying messages
from a process p only if p crashes.

upon initialization do
delivered := {}

upon RB-broadcast(m) do
send(m) to N\ {p}
RB-deliver(m)

upon BEB-receive(m) from q do
if not m € delivered
send (m) to M\ {p, q}
RB-deliver(m)
delivered := delivered U m

Agreement: Before RB-delivering m, a correct process p forwards m to all processes. By the
properties of perfect channels and the fact that p is correct, all correct processes will eventually

receive m and RB-deliver it.

Exercise 2

The reliable broadcast algorithm presented in class has the processes
continuously fill their different buffers without emptying them.

Implements: ReliableBroadcast (rb).
Uses:
BestEffortBroadcast (beb).
PerfectFailureDetector (P).
upon event < Init > do
delivered := &;
correct :=S;
forall pi € S do from[pi] := &;

Modify it to remove (i.e.

A. from, and
B. delivered

upon event < rbBroadcast, m> do upon event < bebDeliver, pi, [Data,pj,m]> do
delivered := delivered U {m}; if m ¢ delivered then
trigger < rbDeliver, self, m>; delivered := delivered U {m};
trigger < bebBroadcast, [Data,self,m]>; trigger < rbDeliver, pj, m>;

if pi ¢ correct then

trigger < bebBroadcast, [Data,pj,m]>;
else

from[pi] : = from[pi] U {[pj,m]};

upon event < crash, pi > do
correct := correct \ {pi};
forall [pj,m] € from[pi] do
trigger < bebBroadcast,[Data,pj,m]>;

garbage collect) unnecessary messages from the buffers:

Exercise 2 (Solution)

A.

The from buffer is used only to store messages that are relayed in the case of
a failure. Therefore, messages from the from buffer can be removed as soon
as they are relayed.

Messages from the delivered array cannot be removed. Consider this
scenario: If a process crashes and its messages are retransmitted by two
different processes, then a process might RB-deliver the same message twice
if it empties the delivered buffer in the meantime. This is a violation of the “no
duplication™ property.

Uniform reliable broadcast
Specification:

e Validity: If a correct process broadcasts m, then it eventually delivers m.

e Integrity: mis delivered by a process at most once, and only if it was
previously broadcast.

e Uniform Agreement: If a eefreet process delivers m, then all correct
processes eventually deliver m.

Algorithnm: All-Ack Uniform Reliable Broadcast

Implements:
UniformReliableBroadcast, instance urb.

Uses:
BestEffortBroadcast, instance beb.
PerfectFailureDetector, instance P.

upon event (urb, Init) do
delivered = (;
pending =0,
correct .= 11,
forall m do ack[m| := 0;

upon event (urb, Broadcast | m) do
pending = pending U {(self,m)};
trigger (beb, Broadcast | [DATA, self, m]);

upon event (beb, Deliver | p, [DATA, s, m]) do
ack[m] :=ack[m] U {p};
if (s,m) & pending then
pending := pending U {(s, m)};

trigger (beb, Broadcast | [DATA, s, m]);

upon event (P, Crash | p) do
correct = correct \ {p};

function candeliver(m) returns Boolean is
return (correct C ack[m]);

upon exists (s, m) € pending such that candeliver(m) A m ¢ delivered do
delivered := delivered U {m};
trigger (urb, Deliver | s, m);

Exercise 3

What happens in the reliable broadcast and uniform reliable broadcast algorithms
if the:

A. accuracy, or
B. completeness

property of the failure detector is violated?

10

Exercise 3 (Solution 1/2)

Reliable broadcast:

1.

Suppose that accuracy is violated. Then, the processes might be relaying
messages when this is not really necessary. This wastes resource, but does
not impact correctness.

Suppose that completeness is violated. Then, the processes might not be
relaying messages they should be relaying. This may violate agreement. For
instance, assume that only a single process p, BEB-delivers (hence
RB-delivers) a message m from a crashed process p,,. If a failure detector (at
p,) does not ever suspect p,, no other correct process will deliver m
(agreement is violated).

11

Exercise 3 (Solution 2/2)

Uniform Reliable broadcast:

Consider a system of three processes p,, p, and p,. Assume that p,
URB-broadcasts the message m.

1. Suppose that accuracy is violated. Assume that p, falsely suspects p, and p,
to have crashed. p, eventually URB-delivers m. Assume that p, crashes
afterwards. It may happen that p, and p, never BEB-deliver m and have no
knowledge about m (uniform agreement is violated).

2. Suppose that completeness is violated. p, might never URB-deliver m if either
p, or p, crashes and p, never detects their crash. Hence, p, would wait

indefinitely for p, and p, to relay m (validity property violation)
12

Exercise 4

Implement a uniform reliable broadcast algorithm without using any failure
detector, i.e., using only BestEffort-Broadcast(BEB).

13

Exercise 4 (Solution)

Just modify the “candeliver” function.

Function candeliver(m) returns Boolean is
return #(ack[m]) > N/ 2

Uniform agreement:

Suppose that a correct process delivers m. That means that at least one correct
process p “acknowledged” m (rebroadcast m using BestEffortBroadcast).
Consequently, all correct processes eventually deliver m from BestEffortBroadcast
broadcast by p and rebroadcast m themselves (if they have not done that yet).
Hence, every correct process eventually collects at least N/2 acknowledgements

and delivers m.

14

Causal Broadcast

Definition (Happens-before):

We say that an event e happens-before an event e’, and we write e — €, if one of
the following three cases holds (is true):

sz‘ clls.t. e= 62, e = ef, r< 8 (e and e’ are executed by the same process)
g = send(m *) o 6, — receive(m) (e and e’ are send/receive events of a
— : -

message respectively)

Je" s.t. e > €' — € (i.e. — is transitive)

15

Causal Broadcast
Specification:

It has the same specification of reliable broadcast, with the additional ordering
constraint of causal order.

More precisely (causal order):

broadcast,(m) — broadcast,(m') = deliver,(m) — deliver,(m')

Which means that:

If the broadcast of a message m happens-before the broadcast of a message m’, then no
process delivers m’ unless it has previously delivered m.

16

Exercise 5

Can we devise a broadcast algorithm that does not ensure the causal delivery
property but only (in) its non-uniform variant:

No correct process p, delivers a message m,, unless p. has already delivered every
message m, such that m, — m,?

17

Exercise 5 (Solution)

No! Assume that some algorithm does not ensure the causal delivery property but
ensures its non-uniform variant. Assume also that m, — m.,,

This means that a correct process has to deliver m, before delivering m,, but a
faulty process is allowed to deliver m, and not deliver m..

However, a process doesn’t know that is faulty in advance (i.e., before it crashes).
So, no algorithm can “treat faulty processes in a special way’, i.e., a process has
to behave correctly until it crashes.

Reminder (Causal delivery property): For any message m, that potentially caused
a message m,,, i.e., m1 — m2, no process delivers m, unless it has already
delivered m.,.

18

Exercise 6

Suggest a memory optimization of the garbage
collection scheme of the following algorithm:

No-Waiting Causal Broadcast

Implements:
CausalOrderReliableBroadcast, instance crb.

Uses:
ReliableBroadcast, instance rb.

upon event (crb, Init) do
delivered := 0);
past :=;

upon event (crb, Broadcast | m) do
trigger (rb, Broadcast | [DATA, past, m]);
append(past, (self,m));

upon event (rb, Deliver | p, [DATA, mpast, m]) do
if m & delivered then
forall (s,n) € mpast do /I by the order in the list
if n & delivered then
trigger (crb, Deliver | s,n);
delivered := delivered U {n};
if (s,n) & past then
append(past, (s,n));
trigger (crb, Deliver | p, m);
delivered := delivered U {m};
if (p,m) & past then
append(past, (p,m));

Garbage-Collection of Causal Past in the

“No-Waiting Causal Broadcast”

Implements:

CausalOrderReliableBroadcast, instance crb.

Uses:
ReliableBroadcast, instance rb;
PerfectFailureDetector, instance P.

// Except for its (Init) event handler, the pseudo code on the left is

/[part of this algorithm.

upon event (crb, Init) do
delivered = 0,
past :=];
correct :=11;
forall m do ack[m] :=0;

upon event (P, Crash | p) do
correct := correct \ {p};

upon exists m € delivered such that self ¢ ack[m] do

ack[m] = ack[m] U {self};
trigger (rb, Broadcast | [ACK, m]);

upon event (rb, Deliver | p, [ACK, m]) do
ack[m)] := ack[m] U {p};

upon correct C ack[m] do
forall (s’,m’) € past such that m’ = m do
remove(past, (s’,m));

19

Exercise 6 (Solution)

When removing a message m from the past, we can also remove all the
messages that causally precede this message — and then recursively those that

causally precede these.

20

Exercise 7

Can we devise a Best-effort Broadcast algorithm that satisfies the causal delivery
property, without being a causal broadcast algorithm, i.e., without satisfying the
agreement property of a reliable broadcast?

21

Exercise 7 (Solution 1/2)

No! Assume that some broadcast algorithm ensures the causal delivery property
and is not reliable, but best-effort; define an instance co of the corresponding
abstraction, where processes co-broadcast and co-deliver messages.

The only way for an algorithm to be best-effort broadcast but not reliable
broadcast is to violate the agreement property: there must be some execution of
the algorithm where some correct process p co-delivers a message m that some
other process g does not ever co-deliver. This is possible in a best-effort broadcast
algorithm, in fact this can only happen if the process s that co-broadcasts the
message m is faulty (and crashes during the broadcast of m).

22

Exercise 7 (Solution 2/2)

Assume now that after co-delivering m, process p co-broadcasts a message m’.
Given that p is correct and that the broadcast is best-effort, all correct processes,

including q, will co-deliver m’. Given that m precedes m’ (in causal order), g must
have co-delivered m as well, a contradiction.

Hence, any best-effort broadcast that satisfies the causal delivery property
satisfies agreement and is, thus, also a reliable broadcast.

In a nutshell: \
S \

/4
/
/
™ | /ﬂ
p \\\ Im’ I .
\ But should have delivered m before!

Exercise 8

In the “Waiting Causal Broadcast”, we say that V < W if, foreveryi=1, ..., N, it
holds that V[i] = WIi].

Question: Why do we not use “<” instead of “<"?

Algorithm 3.15: Waiting Causal Broadcast

Implements:
CausalOrderReliableBroadcast, instance crb.

Uses:
ReliableBroadcast, instance rb.

upon event (crb, Init) do
V=[oV;
Isn :=0;
pending := 0;

upon event (crb, Broadcast | m) do
W=V,
W [rank(self)] := Isn;
Isn:=lIsn+1;
trigger (rb, Broadcast | [DATA, W, m]);

upon event (rb, Deliver | p, [DATA, W, m]) do
pending := pending U {(p, W, m)};
while exists (p’, W', m') € pending such that W’ <V do
pending := pending \ {(p’, W',m’)};
V[rank(p')] := V [rank(p’)] + 1;
trigger (crb, Deliver | p', m’);

Exercise 8 (Solution)

Let V be encoding of the past of process g, and W be the encoding of the sender s
at the moment of sending a message m.

“V[p] = W[p]” means that q is not “missing” any messages from p that s had
delivered before it sent m. Hence, q should not wait for any other messages with
sender p and should deliver m.

Example: Suppose that s broadcasts m with the vector clock [0, ..., 0]. Then, no
process delivers m if we use “<” instead of “<”.

25

